课时的变化。在初中,由于内容少,题型简单,课时较充足,因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而高中知识点增多,灵活性大,课时减少,课容量却增大,进度加快,对重难点内容没有更多的时间强调,对各类题型也不可能讲全讲细和巩固强化。这也使一些高一新生因一开始不能适应高中学习而影响成绩。
学习方法的变化。在初中,教师讲得细,类型归纳得全,练得多。考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多、时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。因此,高中数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生往往习惯沿用初中学法,致使学习困难较多,有的连完成当天作业都很困难,更没有预习、复习及总结等自我消化的时间。这显然不利于良好学法的形成和学习质量的提高。
有针对性地作好知识准备
针对上述问题,学生们首先要调整好自己的心态,不要把进入高中的兴奋和自满感带入新的学习,而应当对初中学习中好的经验做些总结,并听取高中老师或高年级同学的建议,踏实迈好第一步。暑假期间学生们可以针对以下两块内容作些更深入的研究,为高中数学的学习打下坚实基础:
(1)代数对象:二次函数与一元二次方程。探索确定二次函数解析式所需独立条件的个数,在已知二次函数图像上的三点的坐标、或已知二次函数图像的顶点及图像上另一点的坐标的情况下,会用待定系数法求二次函数的解析式;掌握待定系数法的基本运用。建立二次函数与一元二次方程的联系,能以函数的观点来理解一元二次方程,并根据相应一元二次方程的根的情况分析二次函数的图像性质。通过观察、分析,发现和归纳一元二次方程的根与系数的关系,掌握一元二次方程的根与系数的关系的证明以及它的基本运用。通过解决现实问题中简单问题的举例,体会二次函数的基本应用和函数模型思想,知道函数是描述客观世界变化规律的重要数学模型。
(2)几何图形:圆。掌握圆的切线的判定和性质,进而掌握两圆公切线的概念及其有关计算;在角与圆的位置关系讨论中,通过图形运动认识圆外角、圆内角、圆周角、弦切角;理解圆周角的概念,初步掌握圆周角定理及其推论;知道弦切角及其性质定理,进一步认识分类讨论的思想方法;探索圆与两条相交直线的位置关系情况,研究特殊位置上图形的度量关系,了解相交弦定理、切割线定理,通过对几个点可以确定一个圆的讨论,认识四点共圆的判定和性质。
相信有了上述数学知识的基础,再加上勤奋学习和钻研,学生们一定能尽快渡过高中的适应期,学好高中数学。